2008 | ISBN-10: 0471754986 | 688 pages | PDF | 6 MB
The essential introduction to the theory and application of linearmodels now in a valuable new edition
Since most advanced statistical tools are generalizations of thelinear model, it is necesâsary to first master the linear model inorder to move forward to more advanced concepts. The linear modelremains the main tool of the applied statistician and is central tothe training of any statistician regardless of whether the focus isapplied or theoretical. This completely revised and updated newedition successfully develops the basic theory of linear models forregression, analysis of variance, analysis of covariance, andlinear mixed models. Recent advances in the methodology related tolinear mixed models, generalized linear models, and the Bayesianlinear model are also addressed.
Linear Models in Statistics, Second Edition includes fullcoverage of advanced topics, such as mixed and generalized linearmodels, Bayesian linear models, twoâway models with empty cells,geometry of least squares, vectorâmatrix calculus, simultaneousinference, and logistic and nonlinear regression. Algebraic,geometrical, frequentist, and Bayesian approaches to both theinference of linear models and the analysis of variance are alsoillustrated. Through the expansion of relevant material and theinclusion of the latest technological developments in the field,this book provides readers with the theoretical foundation tocorrectly interpret computer software output as well as effectivelyuse, customize, and understand linear models.
This modern Second Edition features:
New chapters on Bayesian linear models as well as random andmixed linear models
Expanded discussion of twoâway models with empty cells
Additional sections on the geometry of least squares
Updated coverage of simultaneous inference
The book is complemented with easyâtoâread proofs, real datasets, and an extensive bibliography. A thorough review of therequisite matrix algebra has been addedfor transitional purposes,and numerous theoretical and applied problems have beenincorporated with selected answers provided at the end of the book.A related Web site includes additional data sets and SAS® codefor all numerical examples.
Linear Model in Statistics, Second Edition is a mustâhave bookfor courses in statistics, biostatistics, and mathematics at theupperâundergraduate and graduate levels. It is also an invaluablereference for researchers who need to gain a better understandingof regression and analysis of variance.